Erkal, J. L. et al. 3D printed microfluidic gadgets with built-in versatile and reusable electrodes. Lab Chip 14, 2023–2032 (2014).
Huang, T. Y. et al. 3D printed microtransporters: compound micromachines for spatiotemporally managed supply of therapeutic brokers. Adv. Mater. 27, 6644–6650 (2015).
von Freymann, G. et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010).
Xiong, W. et al. Laser-directed meeting of aligned carbon nanotubes in three dimensions for multifunctional system fabrication. Adv. Mater. 28, 2002–2009 (2016).
Zhang, W. et al. 3D printed micro-electrochemical vitality storage gadgets: from design to integration. Adv. Funct. Mater. 31, 2104909 (2021).
Wei, T. S., Ahn, B. Y., Grotto, J. & Lewis, J. A. 3D printing of personalized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018).
Symes, M. D. et al. Built-in 3D-printed reactionware for chemical synthesis and evaluation. Nat. Chem. 4, 349–354 (2012).
Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012).
Lee, A. et al. 3D bioprinting of collagen to rebuild elements of the human coronary heart. Science 365, 482–487 (2019).
Kawata, S., Solar, H. B., Tanaka, T. & Takada, Ok. Finer options for purposeful microdevices. Nature 412, 697–698 (2001).
Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).
Guo, L. J. Nanoimprint lithography: strategies and materials necessities. Adv. Mater. 19, 495–513 (2007).
Tumbleston, J. R. et al. Steady liquid interface manufacturing of 3D objects. Science 347, 1349–1352 (2015).
Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: a overview. J. Vac. Sci. Technol. B 23, 877–894 (2005).
Arnoux, C. et al. Polymerization photoinitiators with near-resonance enhanced two-photon absorption cross-section: towards high-resolution photoresist with improved sensitivity. Macromolecules 53, 9264–9278 (2020).
Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm characteristic dimension. Nat. Commun. 4, 2061 (2013).
Jin, F. et al. λ/30 inorganic options achieved by multi-photon 3D lithography. Nat. Commun. 13, 1357 (2022).
Portela, C. M. et al. Supersonic influence resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).
Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication primarily based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).
Oakdale, J. S. et al. Direct laser writing of low-density interdigitated foams for plasma drive shaping. Adv. Funct. Mater. 27, 1702425 (2017).
Fischer, J. et al. Three-dimensional multi-photon direct laser writing with variable repetition price. Decide. Specific 21, 26244–26260 (2013).
Meza, L. R., Das, S. & Greer, J. R. Sturdy, light-weight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).
Malinauskas, M., Zukauskas, A., Bickauskaite, G., Gadonas, R. & Juodkazis, S. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Decide. Specific 18, 10209–10221 (2010).
Shaw, L. A. et al. Scanning two-photon steady movement lithography for synthesis of high-resolution 3D microparticles. Decide. Specific 26, 13543–13548 (2018).
Ito, H. Chemical amplification resists for microlithography. Adv. Polym. Sci. 172, 37–245 (2005).
Ito, H. Chemical amplification resists: inception, implementation in system manufacture, and new developments. J. Polym. Sci. A 41, 3863–3870 (2003).
Ito, H. Chemical amplification resists: Historical past and improvement inside IBM. IBM J. Res. Dev. 41, 69–80 (1997).
Bourzac, Ok. An enormous bid to etch tiny circuits. Nature 487, 419 (2012).
Lithography roadmap on observe. Nat. Photon. 4, 20 (2010).
Totzeck, M., Ulrich, W., Göhnermeier, A. & Kaiser, W. Pushing deep ultraviolet lithography to its limits. Nat. Photon. 1, 629–631 (2007).
Trikeriotis, M. et al. Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning. J. Photopolym. Sci. Technol. 25, 583–586 (2012).
Jiang, J., Chakrabarty, S., Yu, M. & Ober, C. Ok. Metallic oxide nanoparticle photoresists for EUV patterning. J. Photopolym. Sci. Technol. 27, 663–666 (2014).
Xu, H. et al. Metallic-organic framework-inspired metal-containing clusters for high-resolution patterning. Chem. Mater. 30, 4124–4133 (2018).
Tanaka, H., Matsumoto, A., Akinaga, Ok., Takahashi, A. & Okada, T. Comparative examine on emission traits of maximum ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas. Appl. Phys. Lett. 87, 041503 (2005).
Service, R. F. Optical lithography goes to extremes-and past. Science 293, 785–786 (2001).
The shrinking chip. Nat. Photonics 3, 485 (2009).
Xu, H., Kosma, V., Giannelis, E. P. & Ober, C. Ok. In pursuit of Moore’s Regulation: polymer chemistry in motion. Polym. J. 50, 45–55 (2018).
Rayleigh, L. On the speculation of optical photos, with particular reference to the microscope. J. R. Microsc. Soc. 42, 167–195 (2011).
Wagner, C. & Harned, N. Lithography will get excessive. Nat. Photon. 4, 24–26 (2010).
Sanders, D. P. Advances in patterning supplies for 193 nm immersion lithography. Chem. Rev. 110, 321–360 (2010).
Pohlers, G., Scaiano, J. C., Step, E. & Sinta, R. Ionic vs free radical pathways within the direct and sensitized photochemistry of 2-(4′-methoxynaphthyl)-4,6-bis(trichloromethyl)-1,3,5-triazine: relevance for photoacid technology. J. Am. Chem. Soc. 121, 6167–6175 (1999).
Pohlers, G., Scaiano, J. C., Sinta, R., Brainard, R. & Pai, D. Mechanistic research of photoacid technology from substituted 4,6-bis(trichloromethyl)-1,3,5-triazines. Chem. Mater. 9, 1353–1361 (1997).
Ligon, S. C., Husar, B., Wutzel, H., Holman, R. & Liska, R. Methods to cut back oxygen inhibition in photoinduced polymerization. Chem. Rev. 114, 557–589 (2014).
Lu, W. E., Dong, X. Z., Chen, W. Q., Zhao, Z. S. & Duan, X. M. Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization. J. Mater. Chem. 21, 5650–5659 (2011).
Sheik-Bahae, M., Mentioned, A. A., Wei, T. H., Hagan, D. J. & Van Stryland, E. W. Delicate measurement of optical nonlinearities utilizing a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).
Sheik-Bahae, M., Mentioned, A. A. & Van Stryland, E. W. Excessive-sensitivity, single-beam n2 measurements. Decide. Lett. 14, 955–957 (1989).
Buckingham, A. D., Fowler, P. W. & Hutson, J. M. Theoretical research of van der Waals molecules and intermolecular forces. Chem. Rev. 88, 963–988 (1988).
Berland, Ok. et al. Van der Waals forces in density purposeful idea: a overview of the vdW-DF technique. Rep. Prog. Phys. 78, 066501 (2015).
Ouyang, W. et al. Ultrafast 3D nanofabrication through digital holography. Nat. Commun. 14, 1716 (2023).
Saha, S. Ok. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).
Sheng, L. et al. Suppressing electrolyte-lithium steel reactivity through Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13, 172 (2022).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. B 136, B864–B871 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations together with trade and correlation results. Phys. Rev. 140, 1133–1138 (1965).
Andzelm, J., Kolmel, C. & Klamt, A. Incorporation of solvent results into density purposeful calculations of molecular energies and geometries. J. Chem. Phys. 103, 9312–9320 (1995).
Klamt, A., Jonas, V., Burger, T. & Lohrenz, J. C. W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998).
Mullins, E. et al. Sigma-profile database for utilizing COSMO-based thermodynamic strategies. Ind. Eng. Chem. Res. 45, 4389–4415 (2006).
Mullins, E., Liu, Y. A., Ghaderi, A. & Quick, S. D. Sigma profile database for predicting strong solubility in pure and combined solvent mixtures for natural pharmacological compounds with COSMO-based thermodynamic strategies. Ind. Eng. Chem. Res. 47, 1707–1725 (2008).
Delley, B. An all-electron numerical technique for fixing the native density purposeful for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).
Delley, B. From molecules to solids with the DMol3 strategy. J. Chem. Phys. 113, 7756–7764 (2000).
Zhao, Y. & Truhlar, D. G. A brand new native density purposeful for main-group thermochemistry, transition steel bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Adamo, C. & Barone, V. Towards dependable density purposeful strategies with out adjustable parameters: the PBE0 mannequin. J. Chem. Phys. 110, 6158–6170 (1999).
Ernzerhof, M. & Scuseria, G. E. Evaluation of the Perdew–Burke–Ernzerhof exchange-correlation purposeful. J. Chem. Phys. 110, 5029–5036 (1999).
Weigend, F. & Ahlrichs, R. Balanced foundation units of break up valence, triple zeta valence and quadruple zeta valence high quality for H to Rn: design and evaluation of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
Weigend, F. Correct Coulomb-fitting foundation units for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Common solvation mannequin primarily based on solute electron density and on a continuum mannequin of the solvent outlined by the majority dielectric fixed and atomic floor tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
Frisch, M. J. et al. Gaussian 16 Revision C (Gaussian, 2016).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).