Hong, C. Ok., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Liu, R. C., Odom, B., Yamamoto, Y. & Tarucha, S. Quantum interference in electron collision. Nature 391, 263–265 (1998).
Lopes, R. et al. Atomic Hong-Ou-Mandel experiment. Nature 520, 66–68 (2015).
Toyoda, Ok., Hiji, R., Noguchi, A. & Urabe, S. Hong-Ou-Mandel interference of two phonons in trapped ions. Nature 527, 74–77 (2015).
Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by impartial sources. Science 339, 1054–1057 (2013).
Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Fashionable Phys. 79, 135–174 (2007).
Bouchard, F. et al. Two-photon interference: the Hong-Ou-Mandel impact. Rep. Prog. Phys. 84, 012402 (2020).
Bocquillon, E. et al. Electron quantum optics: partitioning electrons one after the other. Phys. Rev. Lett. 108, 196803 (2012).
Bocquillon, E. et al. Electron quantum optics in ballistic chiral conductors. Ann. Phys. 526, 1–30 (2013).
Dubois, J. et al. Minimal-excitation states for electron quantum optics utilizing levitons. Nature 502, 659–663 (2013).
Jullien, T. et al. Quantum tomography of an electron. Nature 514, 603–607 (2014).
Bäuerle, C. et al. Coherent management of single electrons: a evaluation of present progress. Rep. Prog. Phys. 81, 056503 (2018).
Takada, S. et al. Sound-driven single-electron switch in a circuit of coupled quantum rails. Nat. Commun. 10, 4557 (2019).
Bisognin, R. et al. Quantum tomography {of electrical} currents. Nat. Commun. 10, 3379 (2019).
Wahl, C., Rech, J., Jonckheere, T. & Martin, T. Interactions and cost fractionalization in an digital Hong-Ou-Mandel interferometer. Phys. Rev. Lett. 112, 046802 (2014).
Freulon, V. et al. Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization. Nat. Commun. 6, 6854 (2015).
Marguerite, A. et al. Two-particle interferometry in quantum Corridor edge channels. Phys. Standing Solidi B 254, 1600618 (2017).
Ferraro, D. et al. Hong-Ou-Mandel characterization of multiply charged Levitons. Eur. Phys. J. Particular Subjects 227, 1345–1359 (2018).
Rebora, G., Acciai, M., Ferraro, D. & Sassetti, M. Collisional interferometry of levitons in quantum Corridor edge channels at ν = 2. Phys. Rev. B 101, 245310 (2020).
Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).
Edlbauer, H. et al. Semiconductor-based electron flying qubits: evaluation on current progress accelerated by numerical modelling. EPJ Quantum Technol. 9, 21 (2022).
Kaestner, B. & Kashcheyevs, V. Non-adiabatic quantized cost pumping with tunable-barrier quantum dots: a evaluation of present progress. Rep. Prog. Phys, 78, 103901 (2015).
Gerster, T. et al. Sturdy formation of quantum dots in GaAs/AlGaAs heterostructures for single-electron metrology. Metrologia 56, 014002 (2018).
Taubert, D. et al. Rest of sizzling electrons in a degenerate two-dimensional electron system: transition to one-dimensional scattering. Phys. Rev. B 83, 235404 (2011).
Ota, T., Akiyama, S., Hashisaka, M., Muraki, Ok. & Fujisawa, T. Spectroscopic examine on hot-electron transport in a quantum Corridor edge channel. Phys. Rev. B 99, 085310 (2019).
Freise, L. et al. Trapping and counting ballistic nonequilibrium electrons. Phys. Rev. Lett. 124, 127701 (2020).
Fletcher, J. D. et al. Clock-controlled emission of single-electron wave packets in a solid-state circuit. Phys. Rev. Lett. 111, 216807 (2013).
Johnson, N. et al. LO-phonon emission price of sizzling electrons from an on-demand single-electron supply in a GaAs/AlGaAs heterostructure. Phys. Rev. Lett. 121, 137703 (2018).
Emary, C., Clark, L. A., Kataoka, M. & Johnson, N. Vitality leisure in sizzling electron quantum optics by way of acoustic and optical phonon emission. Phys. Rev. B 99, 045306 (2019).
Ubbelohde, N. et al. Partitioning of on-demand electron pairs. Nat. Nanotechnol. 10, 46–49 (2015).
Fletcher, J. D. et al. Steady-variable tomography of solitary electrons. Nat. Commun. 10, 5298 (2019).
Kashcheyevs, V. & Samuelsson, P. Classical-to-quantum crossover in electron on-demand emission. Phys. Rev. B 95, 245424 (2017).
Reifert, D., Kokainis, M., Ambainis, A., Kashcheyevs, V. & Ubbelohde, N. A random-walk benchmark for single-electron circuits. Nat. Commun. 12, 285 (2021).
Marguerite, A. et al. Decoherence and leisure of a single electron in a one-dimensional conductor. Phys. Rev. B 94, 115311 (2016).
Pavlovska, E., Silvestrov, P. G., Recher, P., Barinovs, G. & Kashcheyevs, V. Collision of two interacting electrons on a mesoscopic beamsplitter: precise answer within the classical restrict. Preprint at arXiv (2022).
Kataoka, M. et al. Time-of-flight measurements of single-electron wave packets in quantum Corridor edge states. Phys. Rev. Lett. 116, 126803 (2016).
Ryu, S., Kataoka, M. & Sim, H.-S. Ultrafast emission and detection of a single-electron Gaussian wave packet: a theoretical examine. Phys. Rev. Lett. 117, 146802 (2016).
Fertig, H. A. & Halperin, B. I. Transmission coefficient of an electron by a saddle-point potential in a magnetic subject. Phys. Rev. B 36, 7969–7976 (1987).
Büttiker, M. Quantized transmission of a saddle-point constriction. Phys. Rev. B 41, 7906–7909 (1990).
Ryu, S. & Sim, H.-S. Partition of two interacting electrons by a possible barrier. Phys. Rev. Lett. 129, 166801 (2022).
Bellentani, L., Bordone, P., Oriols, X. & Bertoni, A. Coulomb and trade interplay results on the precise two-electron dynamics within the Hong-Ou-Mandel interferometer primarily based on Corridor edge states. Phys. Rev. B 99, 245415 (2019).
Locane, E., Brouwer, P. W. & Kashcheyevs, V. Time-energy filtering of single electrons in ballistic waveguides. N. J. Phys. 21, 093042 (2019).
Fletcher, J. D. et al. Time-resolved coulomb collision of single electrons. Preprint at arXiv (2022).
Wang, J. et al. Coulomb-mediated antibunching of an electron pair browsing on sound. Preprint at arXiv (2022).