Two electrons interacting at a mesoscopic beam splitter


  • Hong, C. Ok., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Liu, R. C., Odom, B., Yamamoto, Y. & Tarucha, S. Quantum interference in electron collision. Nature 391, 263–265 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Lopes, R. et al. Atomic Hong-Ou-Mandel experiment. Nature 520, 66–68 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Toyoda, Ok., Hiji, R., Noguchi, A. & Urabe, S. Hong-Ou-Mandel interference of two phonons in trapped ions. Nature 527, 74–77 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by impartial sources. Science 339, 1054–1057 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Fashionable Phys. 79, 135–174 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Bouchard, F. et al. Two-photon interference: the Hong-Ou-Mandel impact. Rep. Prog. Phys. 84, 012402 (2020).

    Article 

    Google Scholar
     

  • Bocquillon, E. et al. Electron quantum optics: partitioning electrons one after the other. Phys. Rev. Lett. 108, 196803 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bocquillon, E. et al. Electron quantum optics in ballistic chiral conductors. Ann. Phys. 526, 1–30 (2013).

    Article 

    Google Scholar
     

  • Dubois, J. et al. Minimal-excitation states for electron quantum optics utilizing levitons. Nature 502, 659–663 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jullien, T. et al. Quantum tomography of an electron. Nature 514, 603–607 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bäuerle, C. et al. Coherent management of single electrons: a evaluation of present progress. Rep. Prog. Phys. 81, 056503 (2018).

    Article 

    Google Scholar
     

  • Takada, S. et al. Sound-driven single-electron switch in a circuit of coupled quantum rails. Nat. Commun. 10, 4557 (2019).

    Article 

    Google Scholar
     

  • Bisognin, R. et al. Quantum tomography {of electrical} currents. Nat. Commun. 10, 3379 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wahl, C., Rech, J., Jonckheere, T. & Martin, T. Interactions and cost fractionalization in an digital Hong-Ou-Mandel interferometer. Phys. Rev. Lett. 112, 046802 (2014).

    Article 

    Google Scholar
     

  • Freulon, V. et al. Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization. Nat. Commun. 6, 6854 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Marguerite, A. et al. Two-particle interferometry in quantum Corridor edge channels. Phys. Standing Solidi B 254, 1600618 (2017).

    Article 

    Google Scholar
     

  • Ferraro, D. et al. Hong-Ou-Mandel characterization of multiply charged Levitons. Eur. Phys. J. Particular Subjects 227, 1345–1359 (2018).

    Article 

    Google Scholar
     

  • Rebora, G., Acciai, M., Ferraro, D. & Sassetti, M. Collisional interferometry of levitons in quantum Corridor edge channels at ν = 2. Phys. Rev. B 101, 245310 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Edlbauer, H. et al. Semiconductor-based electron flying qubits: evaluation on current progress accelerated by numerical modelling. EPJ Quantum Technol. 9, 21 (2022).

    Article 

    Google Scholar
     

  • Kaestner, B. & Kashcheyevs, V. Non-adiabatic quantized cost pumping with tunable-barrier quantum dots: a evaluation of present progress. Rep. Prog. Phys, 78, 103901 (2015).

    Article 

    Google Scholar
     

  • Gerster, T. et al. Sturdy formation of quantum dots in GaAs/AlGaAs heterostructures for single-electron metrology. Metrologia 56, 014002 (2018).

    Article 

    Google Scholar
     

  • Taubert, D. et al. Rest of sizzling electrons in a degenerate two-dimensional electron system: transition to one-dimensional scattering. Phys. Rev. B 83, 235404 (2011).

    Article 

    Google Scholar
     

  • Ota, T., Akiyama, S., Hashisaka, M., Muraki, Ok. & Fujisawa, T. Spectroscopic examine on hot-electron transport in a quantum Corridor edge channel. Phys. Rev. B 99, 085310 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Freise, L. et al. Trapping and counting ballistic nonequilibrium electrons. Phys. Rev. Lett. 124, 127701 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fletcher, J. D. et al. Clock-controlled emission of single-electron wave packets in a solid-state circuit. Phys. Rev. Lett. 111, 216807 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, N. et al. LO-phonon emission price of sizzling electrons from an on-demand single-electron supply in a GaAs/AlGaAs heterostructure. Phys. Rev. Lett. 121, 137703 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Emary, C., Clark, L. A., Kataoka, M. & Johnson, N. Vitality leisure in sizzling electron quantum optics by way of acoustic and optical phonon emission. Phys. Rev. B 99, 045306 (2019).

    Article 

    Google Scholar
     

  • Ubbelohde, N. et al. Partitioning of on-demand electron pairs. Nat. Nanotechnol. 10, 46–49 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fletcher, J. D. et al. Steady-variable tomography of solitary electrons. Nat. Commun. 10, 5298 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kashcheyevs, V. & Samuelsson, P. Classical-to-quantum crossover in electron on-demand emission. Phys. Rev. B 95, 245424 (2017).

    Article 

    Google Scholar
     

  • Reifert, D., Kokainis, M., Ambainis, A., Kashcheyevs, V. & Ubbelohde, N. A random-walk benchmark for single-electron circuits. Nat. Commun. 12, 285 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Marguerite, A. et al. Decoherence and leisure of a single electron in a one-dimensional conductor. Phys. Rev. B 94, 115311 (2016).

    Article 

    Google Scholar
     

  • Pavlovska, E., Silvestrov, P. G., Recher, P., Barinovs, G. & Kashcheyevs, V. Collision of two interacting electrons on a mesoscopic beamsplitter: precise answer within the classical restrict. Preprint at arXiv (2022).

  • Kataoka, M. et al. Time-of-flight measurements of single-electron wave packets in quantum Corridor edge states. Phys. Rev. Lett. 116, 126803 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, S., Kataoka, M. & Sim, H.-S. Ultrafast emission and detection of a single-electron Gaussian wave packet: a theoretical examine. Phys. Rev. Lett. 117, 146802 (2016).

    Article 

    Google Scholar
     

  • Fertig, H. A. & Halperin, B. I. Transmission coefficient of an electron by a saddle-point potential in a magnetic subject. Phys. Rev. B 36, 7969–7976 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Büttiker, M. Quantized transmission of a saddle-point constriction. Phys. Rev. B 41, 7906–7909 (1990).

    Article 

    Google Scholar
     

  • Ryu, S. & Sim, H.-S. Partition of two interacting electrons by a possible barrier. Phys. Rev. Lett. 129, 166801 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bellentani, L., Bordone, P., Oriols, X. & Bertoni, A. Coulomb and trade interplay results on the precise two-electron dynamics within the Hong-Ou-Mandel interferometer primarily based on Corridor edge states. Phys. Rev. B 99, 245415 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Locane, E., Brouwer, P. W. & Kashcheyevs, V. Time-energy filtering of single electrons in ballistic waveguides. N. J. Phys. 21, 093042 (2019).

    Article 

    Google Scholar
     

  • Fletcher, J. D. et al. Time-resolved coulomb collision of single electrons. Preprint at arXiv (2022).

  • Wang, J. et al. Coulomb-mediated antibunching of an electron pair browsing on sound. Preprint at arXiv (2022).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles