Non-invasive activation of intratumoural gene enhancing for improved adoptive T-cell remedy in strong tumours


  • Hou, A. J., Chen, L. C. & Chen, Y. Y. Navigating CAR-T cells by way of the solid-tumor microenvironment. Nat. Rev. Drug Discov. 20, 531–550 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hong, M., Clubb, J. D. & Chen, Y. Y. Engineering CAR-T cells for next-generation most cancers remedy. Most cancers Cell 38, 473–488 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. NR4A transcription elements restrict CAR T cell perform in strong tumors. Nature 567, 530–534 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schreiber, R. D., Outdated, L. J. & Smyth, M. J. Most cancers immunoediting: integrating immunity’s roles in most cancers suppression and promotion. Science 331, 1565–1570 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zou, W. Immunosuppressive networks within the tumor setting and their therapeutic relevance. Nat. Rev. Most cancers 5, 263–274 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y. et al. Enhancing immune–vascular crosstalk for most cancers immunotherapy. Nat. Rev. Immunol. 18, 195–203 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor exercise of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chang, Z. L., Hou, A. J. & Chen, Y. Y. Engineering major T cells with chimeric antigen receptors for rewired responses to soluble ligands. Nat. Protoc. 15, 1507–1524 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Leen, A. M. et al. Reversal of tumor immune inhibition utilizing a chimeric cytokine receptor. Mol. Ther. 22, 1211–1220 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Make investments. 126, 3130–3144 (2016).

    Article 

    Google Scholar
     

  • Liu, X. et al. A chimeric switch-receptor concentrating on PD1 augments the efficacy of second-generation CAR T-cells in superior strong tumors. Most cancers Res. 76, 1578–1590 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tang, T. C. Y., Xu, N. & Dolnikov, A. Concentrating on the immune-suppressive tumor microenvironment to potentiate CAR T cell remedy. Most cancers Rep. Rev. 4, 1–5 (2020).


    Google Scholar
     

  • Karlsson, H. Approaches to enhance CAR T-cell remedy by concentrating on the apoptotic equipment. Biochem. Soc. Trans. 44, 371–376 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Inexperienced, D. R. The approaching decade of cell dying analysis: 5 riddles. Cell 177, 1094–1107 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell dying as a defence towards an infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. A., Kim, Y., Kwon, B. M. & Han, D. C. The pure compound cantharidin induces most cancers cell dying by way of inhibition of warmth shock protein 70 (HSP70) and BCL2-associated athanogene area 3 (BAG3) expression by blocking warmth shock issue 1 (HSF1) binding to promoters. J. Biol. Chem. 288, 28713–28726 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rosati, A., Graziano, V., Laurenzi, V. D., Pascale, M. & Turco, M. C. BAG3: a multifaceted protein that regulates main cell pathways. Cell Loss of life Dis. 2, e141 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, B. Ok. et al. Gold-nanorods–siRNA nanoplex for improved photothermal remedy by gene silencing. Biomaterials 78, 27 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Joung, J. et al. CRISPR activation display identifies BCL-2 proteins and B3GNT2 as drivers of most cancers resistance to T cell-mediated cytotoxicity. Nat. Commun. 13, 1606 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rosati, A. et al. BAG3 promotes pancreatic ductal adenocarcinoma progress by activating stromal macrophages. Nat. Commun. 6, 8695 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lamprecht, A. Nanomedicines in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 12, 669 (2015).

    Article 

    Google Scholar
     

  • Dudeja, V., Vickers, S. M. & Saluja, A. Ok. The position of warmth shock proteins in gastrointestinal illnesses. Intestine 58, 1000–1009 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Marzullo, L., Turco, M. C. & Marco, M. D. The a number of actions of BAG3 protein: mechanisms. Biochim. Biophys. Acta, Gen. Subj. 1864, 129628 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Romano, M. F. et al. BAG3 protein controls B-chronic lymphocytic leukaemia cell apoptosis. Cell Loss of life Differ. 10, 383–385 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Ammirante, M. et al. IKKγ protein is a goal of BAG3 regulatory exercise in human tumor progress. Proc. Natl Acad. Sci. USA 107, 7497–7502 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Eltoukhy, A. A., Chen, D., Albi, C. A., Langer, R. & Anderson, D. G. Degradable terpolymers with alkyl aspect chains exhibit enhanced gene supply efficiency and nanoparticle stability. Adv. Mater. 25, 1487–1493 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rui, Y. et al. Excessive-throughput and high-content bioassay allows tuning of polyester nanoparticles for mobile uptake, endosomal escape, and systemic in vivo supply of mRNA. Sci. Adv. 8, eabk2855 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zha, M. et al. An ester-substituted semiconducting polymer with environment friendly nonradiative decay enhances NIR-II photoacoustic efficiency for monitoring of tumor progress. Angew. Chem. Int. Ed. 59, 23268–23276 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Banerjee, R., Tyagi, P., Li, S. & Huang, L. Anisamide-targeted stealth liposomes: a potent provider for concentrating on doxorubicin to human prostate most cancers cells. Int. J. Most cancers 112, 693–700 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Supply of CRISPR/Cas9 plasmids by cationic gold nanorods: impression of the facet ratio on genome enhancing and therapy of hepatic fibrosis. Chem. Mater. 33, 81–91 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, N. et al. Chimeric antigen receptor-modified T cells redirected to EphA2 for the immunotherapy of non-small cell lung most cancers. Transl. Oncol. 11, 11–17 (2018).

    Article 

    Google Scholar
     

  • Chen, X., Chen, Y., Xin, H., Wan, T. & Ping, Y. Close to-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome enhancing. Proc. Natl Acad. Sci. USA 117, 2395–2405 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y., Yan, X. & Ping, Y. Optical manipulation of CRISPR/Cas9 features: from ultraviolet to near-infrared gentle. ACS Mater. Lett. 2, 644–653 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W., He, M., Huang, G. & He, J. A comparability of ultrasound-guided excessive depth targeted ultrasound for the therapy of uterine fibroids in sufferers with an anteverted uterus and a retroverted uterus. Int. J. Hyperther. 32, 623–629 (2016).

    Article 

    Google Scholar
     

  • Klichinsky, M. et al. Human chimeric antigen receptor macrophages for most cancers immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Y. et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat. Immunol. 22, 746–756 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Etxeberria, I. et al. Intratumor adoptive switch of IL-12 mRNA transiently engineered antitumor CD8+ T cells. Most cancers Cell 36, 613–629 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Singh, N. et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 27, 842–850 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Etxeberria, I. et al. Engineering bionic T cells: sign 1, sign 2, sign 3, reprogramming and the elimination of inhibitory mechanisms. Cell. Mol. Immunol. 17, 576–586 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rostamian, H. et al. A metabolic change to reminiscence CAR T cells: implications for most cancers therapy. Most cancers Lett. 500, 107–118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Korde, L. A., Somerfield, M. R. & Hershman, D. L. Use of immune checkpoint inhibitor pembrolizumab within the therapy of high-risk, early-stage triple-negative breast most cancers: ASCO guideline speedy advice replace. J. Clin. Oncol. 39, 1696–1698 (2021).


    Google Scholar
     

  • Yoshida, Ok., Yamaguchi, Ok., Okumura, N., Tanahashi, T. & Kodera, Y. Is conversion remedy attainable in stage IV gastric most cancers: the proposal of latest organic classes of classification. Gastric Most cancers 19, 329–338 (2016).

    Article 

    Google Scholar
     

  • Music, T., Lang, M., Ren, S., Gan, L. & Lu, W. The previous, current and way forward for conversion remedy for liver most cancers. Am. J. Most cancers Res. 11, 4711–4724 (2021).

    CAS 

    Google Scholar
     

  • Solar, H. & Zhu, X. Downstaging conversion remedy in sufferers with initially unresectable superior hepatocellular carcinoma: an summary. Entrance. Oncol. 11, 772195 (2021).

    Article 

    Google Scholar
     

  • Kishton, R. J., Lynn, R. C. & Restifo, N. P. Power in numbers: figuring out neoantigen targets for most cancers immunotherapy. Cell 184, 5031–5052 (2021).


    Google Scholar
     

  • Storz, P. & Crawford, H. C. Carcinogenesis of pancreatic ductal adenocarcinoma. Gastroenterology 158, 2072–2081 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hosein, A. N., Dougan, S. Ok., Aguirre, A. J. & Maitra, A. Translational advances in pancreatic ductal adenocarcinoma remedy. Nat. Most cancers 3, 272–286 (2022).

    Article 

    Google Scholar
     

  • Xue, G. et al. Adoptive cell remedy with tumor-specific Th9 cells induces viral mimicry to get rid of antigen-loss-variant tumor cells. Most cancers Cell 39, 1610–1622 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hirabayashi, Ok. et al. Twin concentrating on CAR-T cells with optimum costimulation and metabolic health improve antitumor exercise and stop escape in strong tumors. Nat. Most cancers 2, 904–918 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bergers, G. & Fendt, S. The metabolism of most cancers cells throughout metastasis. Nat. Rev. Most cancers 21, 162–180 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles