Hou, A. J., Chen, L. C. & Chen, Y. Y. Navigating CAR-T cells by way of the solid-tumor microenvironment. Nat. Rev. Drug Discov. 20, 531–550 (2021).
Hong, M., Clubb, J. D. & Chen, Y. Y. Engineering CAR-T cells for next-generation most cancers remedy. Most cancers Cell 38, 473–488 (2020).
Chen, J. et al. NR4A transcription elements restrict CAR T cell perform in strong tumors. Nature 567, 530–534 (2019).
Schreiber, R. D., Outdated, L. J. & Smyth, M. J. Most cancers immunoediting: integrating immunity’s roles in most cancers suppression and promotion. Science 331, 1565–1570 (2011).
Zou, W. Immunosuppressive networks within the tumor setting and their therapeutic relevance. Nat. Rev. Most cancers 5, 263–274 (2005).
Huang, Y. et al. Enhancing immune–vascular crosstalk for most cancers immunotherapy. Nat. Rev. Immunol. 18, 195–203 (2018).
Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor exercise of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).
Chang, Z. L., Hou, A. J. & Chen, Y. Y. Engineering major T cells with chimeric antigen receptors for rewired responses to soluble ligands. Nat. Protoc. 15, 1507–1524 (2020).
Leen, A. M. et al. Reversal of tumor immune inhibition utilizing a chimeric cytokine receptor. Mol. Ther. 22, 1211–1220 (2014).
Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Make investments. 126, 3130–3144 (2016).
Liu, X. et al. A chimeric switch-receptor concentrating on PD1 augments the efficacy of second-generation CAR T-cells in superior strong tumors. Most cancers Res. 76, 1578–1590 (2016).
Tang, T. C. Y., Xu, N. & Dolnikov, A. Concentrating on the immune-suppressive tumor microenvironment to potentiate CAR T cell remedy. Most cancers Rep. Rev. 4, 1–5 (2020).
Karlsson, H. Approaches to enhance CAR T-cell remedy by concentrating on the apoptotic equipment. Biochem. Soc. Trans. 44, 371–376 (2016).
Inexperienced, D. R. The approaching decade of cell dying analysis: 5 riddles. Cell 177, 1094–1107 (2019).
Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell dying as a defence towards an infection. Nat. Rev. Immunol. 17, 151–164 (2017).
Kim, J. A., Kim, Y., Kwon, B. M. & Han, D. C. The pure compound cantharidin induces most cancers cell dying by way of inhibition of warmth shock protein 70 (HSP70) and BCL2-associated athanogene area 3 (BAG3) expression by blocking warmth shock issue 1 (HSF1) binding to promoters. J. Biol. Chem. 288, 28713–28726 (2013).
Rosati, A., Graziano, V., Laurenzi, V. D., Pascale, M. & Turco, M. C. BAG3: a multifaceted protein that regulates main cell pathways. Cell Loss of life Dis. 2, e141 (2011).
Wang, B. Ok. et al. Gold-nanorods–siRNA nanoplex for improved photothermal remedy by gene silencing. Biomaterials 78, 27 (2016).
Joung, J. et al. CRISPR activation display identifies BCL-2 proteins and B3GNT2 as drivers of most cancers resistance to T cell-mediated cytotoxicity. Nat. Commun. 13, 1606 (2022).
Rosati, A. et al. BAG3 promotes pancreatic ductal adenocarcinoma progress by activating stromal macrophages. Nat. Commun. 6, 8695 (2015).
Lamprecht, A. Nanomedicines in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 12, 669 (2015).
Dudeja, V., Vickers, S. M. & Saluja, A. Ok. The position of warmth shock proteins in gastrointestinal illnesses. Intestine 58, 1000–1009 (2009).
Marzullo, L., Turco, M. C. & Marco, M. D. The a number of actions of BAG3 protein: mechanisms. Biochim. Biophys. Acta, Gen. Subj. 1864, 129628 (2020).
Romano, M. F. et al. BAG3 protein controls B-chronic lymphocytic leukaemia cell apoptosis. Cell Loss of life Differ. 10, 383–385 (2003).
Ammirante, M. et al. IKKγ protein is a goal of BAG3 regulatory exercise in human tumor progress. Proc. Natl Acad. Sci. USA 107, 7497–7502 (2010).
Eltoukhy, A. A., Chen, D., Albi, C. A., Langer, R. & Anderson, D. G. Degradable terpolymers with alkyl aspect chains exhibit enhanced gene supply efficiency and nanoparticle stability. Adv. Mater. 25, 1487–1493 (2013).
Rui, Y. et al. Excessive-throughput and high-content bioassay allows tuning of polyester nanoparticles for mobile uptake, endosomal escape, and systemic in vivo supply of mRNA. Sci. Adv. 8, eabk2855 (2022).
Zha, M. et al. An ester-substituted semiconducting polymer with environment friendly nonradiative decay enhances NIR-II photoacoustic efficiency for monitoring of tumor progress. Angew. Chem. Int. Ed. 59, 23268–23276 (2020).
Banerjee, R., Tyagi, P., Li, S. & Huang, L. Anisamide-targeted stealth liposomes: a potent provider for concentrating on doxorubicin to human prostate most cancers cells. Int. J. Most cancers 112, 693–700 (2004).
Chen, Y. et al. Supply of CRISPR/Cas9 plasmids by cationic gold nanorods: impression of the facet ratio on genome enhancing and therapy of hepatic fibrosis. Chem. Mater. 33, 81–91 (2021).
Li, N. et al. Chimeric antigen receptor-modified T cells redirected to EphA2 for the immunotherapy of non-small cell lung most cancers. Transl. Oncol. 11, 11–17 (2018).
Chen, X., Chen, Y., Xin, H., Wan, T. & Ping, Y. Close to-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome enhancing. Proc. Natl Acad. Sci. USA 117, 2395–2405 (2020).
Chen, Y., Yan, X. & Ping, Y. Optical manipulation of CRISPR/Cas9 features: from ultraviolet to near-infrared gentle. ACS Mater. Lett. 2, 644–653 (2020).
Zhang, W., He, M., Huang, G. & He, J. A comparability of ultrasound-guided excessive depth targeted ultrasound for the therapy of uterine fibroids in sufferers with an anteverted uterus and a retroverted uterus. Int. J. Hyperther. 32, 623–629 (2016).
Klichinsky, M. et al. Human chimeric antigen receptor macrophages for most cancers immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).
Guo, Y. et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat. Immunol. 22, 746–756 (2021).
Etxeberria, I. et al. Intratumor adoptive switch of IL-12 mRNA transiently engineered antitumor CD8+ T cells. Most cancers Cell 36, 613–629 (2019).
Singh, N. et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 27, 842–850 (2021).
Etxeberria, I. et al. Engineering bionic T cells: sign 1, sign 2, sign 3, reprogramming and the elimination of inhibitory mechanisms. Cell. Mol. Immunol. 17, 576–586 (2020).
Rostamian, H. et al. A metabolic change to reminiscence CAR T cells: implications for most cancers therapy. Most cancers Lett. 500, 107–118 (2021).
Korde, L. A., Somerfield, M. R. & Hershman, D. L. Use of immune checkpoint inhibitor pembrolizumab within the therapy of high-risk, early-stage triple-negative breast most cancers: ASCO guideline speedy advice replace. J. Clin. Oncol. 39, 1696–1698 (2021).
Yoshida, Ok., Yamaguchi, Ok., Okumura, N., Tanahashi, T. & Kodera, Y. Is conversion remedy attainable in stage IV gastric most cancers: the proposal of latest organic classes of classification. Gastric Most cancers 19, 329–338 (2016).
Music, T., Lang, M., Ren, S., Gan, L. & Lu, W. The previous, current and way forward for conversion remedy for liver most cancers. Am. J. Most cancers Res. 11, 4711–4724 (2021).
Solar, H. & Zhu, X. Downstaging conversion remedy in sufferers with initially unresectable superior hepatocellular carcinoma: an summary. Entrance. Oncol. 11, 772195 (2021).
Kishton, R. J., Lynn, R. C. & Restifo, N. P. Power in numbers: figuring out neoantigen targets for most cancers immunotherapy. Cell 184, 5031–5052 (2021).
Storz, P. & Crawford, H. C. Carcinogenesis of pancreatic ductal adenocarcinoma. Gastroenterology 158, 2072–2081 (2020).
Hosein, A. N., Dougan, S. Ok., Aguirre, A. J. & Maitra, A. Translational advances in pancreatic ductal adenocarcinoma remedy. Nat. Most cancers 3, 272–286 (2022).
Xue, G. et al. Adoptive cell remedy with tumor-specific Th9 cells induces viral mimicry to get rid of antigen-loss-variant tumor cells. Most cancers Cell 39, 1610–1622 (2021).
Hirabayashi, Ok. et al. Twin concentrating on CAR-T cells with optimum costimulation and metabolic health improve antitumor exercise and stop escape in strong tumors. Nat. Most cancers 2, 904–918 (2021).
Bergers, G. & Fendt, S. The metabolism of most cancers cells throughout metastasis. Nat. Rev. Most cancers 21, 162–180 (2021).