Wadhawan, V. Introduction to Ferroic Supplies 1st edn (CRC, 2000).
Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Damaged symmetries, non-reciprocity, and multiferroicity. npj Quant. Mater. 3, 19 (2018).
Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Statement of ferrotoroidic domains. Nature 449, 702–705 (2007).
Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal second in condensed-matter physics and its relation to the magnetoelectric impact. J. Phys. Condens. Matter 20, 434203 (2008).
Zimmermann, A. S., Meier, D. & Fiebig, M. Ferroic nature of magnetic toroidal order. Nat. Commun. 5, 4796 (2014).
Hlinka, J., Privratska, J., Ondrejkovic, P. & Janovec, V. Symmetry information to ferroaxial transitions. Phys. Rev. Lett. 116, 177602 (2016).
Fiebig, M. Order! order!! Nat. Phys. 16, 9–10 (2020).
Gopalan, V. & Litvin, D. B. Rotation-reversal symmetries in crystals and handed constructions. Nat. Mater. 10, 376–381 (2011).
Johnson, R. D. et al. Cu3Nb2O8: a multiferroic with chiral coupling to the crystal construction. Phys. Rev. Lett. 107, 137205 (2011).
Johnson, R. D. et al. Large improper ferroelectricity within the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).
Jin, W. et al. Statement of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).
Luo, X. et al. Ultrafast modulations and detection of a ferro-rotational cost density wave utilizing time-resolved electrical quadrupole second harmonic technology. Phys. Rev. Lett. 127, 126401 (2021).
Hayashida, T. et al. Visualization of ferroaxial domains in an order–dysfunction sort ferroaxial crystal. Nat. Commun. 11, 4582 (2020).
Hayashida, T. et al. Part transition and area formation in ferroaxial crystals. Phys. Rev. Mater. 5, 124409 (2021).
Cheong, S.-W., Lim, S., Du, Okay. & Huang, F.-T. Permutable SOS (symmetry operational similarity). npj Quant. Mater. 6, 58 (2021).
Naumov, I. I., Bellaiche, L. & Fu, H. Uncommon part transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
Damodaran, A. R. et al. Part coexistence and electric-field management of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).
Fichera, B. T. et al. Second harmonic technology as a probe of damaged mirror symmetry. Phys. Rev. B 101, 241106 (2020).
Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).
Stojchevska, L. et al. Ultrafast switching to a steady hidden quantum state in an digital crystal. Science 344, 177–180 (2014).
Yoshida, M. et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 4, 7302 (2014).
Yu, Y. et al. Gate-tunable part transitions in skinny flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).
Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive part switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015).
Cho, D. et al. Nanoscale manipulation of the Mott insulating state coupled to cost order in 1T-TaS2. Nat. Commun. 7, 10453 (2016).
Ma, L. et al. A metallic mosaic part and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 7, 10956 (2016).
Vaskivskyi, I. et al. Quick digital resistance switching involving hidden cost density wave states. Nat. Commun. 7, 11442 (2016).
Qiao, S. et al. Mottness collapse in 1T-TaS2−xSex transition-metal dichalcogenide: an interaction between localized and itinerant orbitals. Phys. Rev. X 7, 041054 (2017).
Fazekas, P. & Tosatti, E. Cost provider localization in pure and doped 1T-TaS2. Physica B+C 99, 183–187 (1980).
Wilson, J., Salvo, F. D. & Mahajan, S. Cost-density waves and superlattices within the metallic layered transition metallic dichalcogenides. Adv. Phys. 24, 117–201 (1975).
Thomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave construction in 1T-TaS2. Phys. Rev. B 49, 16899–16916 (1994).
Zong, A. et al. Ultrafast manipulation of mirror area partitions in a cost density wave. Sci. Adv. 4, eaau5501 (2018).
Ishioka, J. et al. Chiral charge-density waves. Phys. Rev. Lett. 105, 176401 (2010).
Xu, S.-Y. et al. Spontaneous gyrotropic digital order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).
Jiang, Y.-X. et al. Unconventional chiral cost order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).
Sung, S. H. et al. Two-dimensional cost order stabilized in clear polytype heterostructures. Nat. Commun. 13, 413 (2022).
Yang, H. F. et al. Visualization of chiral digital construction and anomalous optical response in a fabric with chiral cost density waves. Phys. Rev. Lett. 129, 156401 (2022).
Track, X. et al. Atomic-scale visualization of chiral cost density wave superlattices and their reversible switching. Nat. Commun. 13, 1843 (2022).
Wu, X. L. & Lieber, C. M. Hexagonal domain-like cost density wave part of TaS2 decided by scanning tunneling microscopy. Science 243, 1703–1705 (1989).
Spijkerman, A., de Boer, J. L., Meetsma, A., Wiegers, G. A. & van Smaalen, S. X-ray crystal-structure refinement of the almost commensurate part of 1T-TaS2 in (3 + 2)-dimensional superspace. Phys. Rev. B 56, 13757–13767 (1997).
Park, J. W., Cho, G. Y., Lee, J. & Yeom, H. W. Emergent honeycomb community of topological excitations in correlated cost density wave. Nat. Commun. 10, 4038 (2019).
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Area wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
Dawber, M., Rabe, Okay. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).
McGilly, L. J., Yudin, P., Feigl, L., Tagantsev, A. Okay. & Setter, N. Controlling area wall movement in ferroelectric skinny movies. Nat. Nanotechnol. 10, 145–150 (2015).
Cho, D. et al. Correlated digital states at area partitions of a Mott-charge-density-wave insulator 1T-TaS2. Nat. Commun. 8, 392 (2017).
Skolimowski, J., Gerasimenko, Y. & Žitko, R. Mottness collapse with out metallization within the area wall of the triangular-lattice Mott insulator 1T-TaS2. Phys. Rev. Lett. 122, 036802 (2019).
Park, J. W., Lee, J. & Yeom, H. W. Zoology of area partitions in quasi-2D correlated cost density wave of 1T-TaS2. npj Quant. Mater. 6, 32 (2021).
Ritschel, T. et al. Orbital textures and cost density waves in transition metallic dichalcogenides. Nat. Phys. 11, 328–331 (2015).
Lee, S.-H., Goh, J. S. & Cho, D. Origin of the insulating part and first-order metallic–insulator transition in 1T-TaS2. Phys. Rev. Lett. 122, 106404 (2019).
Butler, C. J., Yoshida, M., Hanaguri, T. & Iwasa, Y. Mottness versus unit-cell doubling as the motive force of the insulating state in 1T-TaS2. Nat. Commun. 11, 2477 (2020).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).