Coulomb-mediated antibunching of an electron pair browsing on sound


  • DiVincenzo, D. The bodily implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article 

    Google Scholar
     

  • Ladd, T. et al. Quantum computer systems. Nature 464, 45–53 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wright, Ok. et al. Benchmarking an 11-qubit quantum laptop. Nat. Commun. 10, 5464 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zwanenburg, F. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hill, C. et al. A floor code quantum laptop in silicon. Sci. Adv. (2015).

  • Vandersypen, L. et al. Interfacing spin qubits in quantum dots and donors–scorching, dense, and coherent. npj Quantum Inf. (2017).

  • O’Brien, J., Furusawa, A. & Vučković, J. Photonic quantum applied sciences. Nat. Photonics 3, 687–695 (2009).

    Article 

    Google Scholar
     

  • Barnes, C., Shilton, J. & Robinson, A. Quantum computation utilizing electrons trapped by floor acoustic waves. Phys. Rev. B 62, 8410–8419 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Ionicioiu, R., Amaratunga, G. & Udrea, F. Quantum computation with ballistic electrons. Int. J. Mod. Phys. B 15, 125–133 (2001).

    Article 

    Google Scholar
     

  • Bäuerle, C. et al. Coherent management of single electrons: a overview of present progress. Rep. Prog. Phys. 81, 056503 (2018).

    Article 

    Google Scholar
     

  • Edlbauer, H. et al. Semiconductor-based electron flying qubits: overview on latest progress accelerated by numerical modelling. EPJ Quantum Technol. (2022).

  • Dubois, J. et al. Minimal-excitation states for electron quantum optics utilizing levitons. Nature 502, 659–663 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by unbiased sources. Science 339, 1054–1057 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jullien, T. et al. Quantum tomography of an electron. Nature 514, 603–607 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hong, C., Ou, Z. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Liu, R., Odom, B., Yamamoto, Y. & Tarucha, S. Quantum interference in electron collision. Nature 391, 263–265 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Kang, Ok. Digital Mach–Zehnder quantum eraser. Phys. Rev. B 75, 125326 (2007).

    Article 

    Google Scholar
     

  • Vyshnevyy, A., Lebedev, A., Lesovik, G. & Blatter, G. Two-particle entanglement in capacitively coupled Mach–Zehnder interferometers. Phys. Rev. B 87, 165302 (2013).

    Article 

    Google Scholar
     

  • Weisz, E. et al. An digital quantum eraser. Science 344, 1363–1366 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lepage, H., Lasek, A., Arvidsson-Shukur, D. & Barnes, C. Entanglement era through power-of-swap operations between dynamic electron-spin qubits. Phys. Rev. A 101, 022329 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jadot, B. et al. Distant spin entanglement through quick and coherent electron shuttling. Nat. Nanotechnol. 16, 570–575 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Choquer, M. et al. Quantum management of optically energetic synthetic atoms with floor acoustic waves. IEEE Trans. Quantum Eng. (2022).

  • Side, A., Dalibard, J. & Roger, G. Experimental check of Bell’s inequalities utilizing time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    Article 

    Google Scholar
     

  • Bell, J. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).


    Google Scholar
     

  • Hermelin, S. et al. Electrons browsing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    Article 
    CAS 

    Google Scholar
     

  • McNeil, R. et al. On-demand single-electron switch between distant quantum dots. Nature 477, 439–442 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Delsing, P. et al. The 2019 floor acoustic waves roadmap. J. Phys. D 52, 353001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Takada, S. et al. Sound-driven single-electron switch in a circuit of coupled quantum rails. Nat. Commun. (2019).

  • Edlbauer, H. et al. In-flight distribution of an electron inside a floor acoustic wave. Appl. Phys. Lett. 119, 114004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ito, R. et al. Coherent beam splitting of flying electrons pushed by a floor acoustic wave. Phys. Rev. Lett. 126, 070501 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chatzikyriakou, E. et al. Unveiling the cost distribution of a GaAs-based nanoelectronic gadget: a big experimental data-set method. Phys. Rev. Analysis 4, 043163 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Helgers, P. et al. Flying electron spin management gates. Nat. Commun. (2022).

  • Wang, J. et al. Era of a single-cycle acoustic pulse: a scalable answer for transport in single-electron circuits. Phys. Rev. X 12, 031035 (2022).

    CAS 

    Google Scholar
     

  • Fletcher, J. et al. Time-resolved Coulomb collision of single electrons. Preprint at arXiv (2022).

  • Ubbelohde, N. et al. Two electrons interacting at a mesoscopic beam splitter. Preprint at arXiv (2022).

  • Birner, S. et al. nextnano: common goal 3-D simulations. IEEE Trans. Electron Gadgets 54, 2137–2142 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hou, H. et al. Experimental verification of electrostatic boundary circumstances in gate-patterned quantum units. J. Phys. D 51, 244004 (2018).

    Article 

    Google Scholar
     

  • Sze, S. & Ng, Ok. Physics of Semiconductor Gadgets, 4 (John Wiley, 2006).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles