Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and part transitions in two-dimensional techniques. J. Phys. C 6, 1181 (1973).
Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, Okay. & Ono, T. Magnetic vortex core statement in round dots of permalloy. Science 289, 930–932 (2000).
Kläui, M. et al. Present-induced vortex nucleation and annihilation in vortex area partitions. Appl. Phys. Lett. 88, 232507 (2006).
Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).
Coïsson, M. Magnetic vortex chirality willpower by way of native hysteresis loops measurements with magnetic pressure microscopy. Sci. Rep. 6, 29904 (2016).
Gao, N. et al. Creation and annihilation of topological meron pairs in in-plane magnetized movies. Nat. Commun. 10, 5603 (2019).
Gao, Y. et al. Spontaneous (anti)meron chains within the area partitions of van der Waals ferromagnetic Fe5−xGeTe2. Adv. Mater. 32, 2005228 (2020).
Li, Z. et al. Area-free topological conduct within the magnetic area wall of ferrimagnetic GdFeCo. Nat. Commun. 12, 5604 (2021).
Wang, Y. et al. Electrical field-driven rotation of magnetic vortex originating from magnetic anisotropy reorientation. Adv. Electron. Mater. 8, 2100561 (2021).
Zhang, S. et al. Direct imaging of an inhomogeneous electrical present distribution utilizing the trajectory of magnetic half-skyrmions. Sci. Adv. 6, eaay1876 (2020).
Göbel, B., Mook, A., Henk, J., Mertig, I. & Tretiakov, O. A. Magnetic bimerons as skyrmion analogues in in-plane magnets. Phys. Rev. B 99, 060407 (2019).
Göbel, B., Mertig, I. & Tretiakov, O. A. Past skyrmions: evaluation and views of other magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).
Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions within the presence of utilized present and temperature. Phys. Rev. Lett. 116, 147203 (2016).
Thiele, A. A. Regular-state movement of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).
Tretiakov, O. A. et al. Dynamics of area partitions in magnetic nanostrips. Phys. Rev. Lett. 100, 127204 (2008).
Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).
Kolesnikov, A. G. et al. Composite topological construction of area partitions in artificial antiferromagnets. Sci. Rep. 8, 15794 (2018).
Kind, J. et al. Imprinting vortices into antiferromagnets. Phys. Rev. Lett. 97, 067201 (2006).
Wu, J. et al. Direct statement of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs. Nat. Phys. 7, 303–306 (2011).
Chmiel, F. P. et al. Statement of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure. Nat. Mater. 17, 581–585 (2018).
Gao, S. et al. Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings. Nature 586, 37–41 (2020).
Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature 590, 74–79 (2021).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).
Olejník, Okay. et al. Antiferromagnetic CuMnAs multi-level reminiscence cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).
Olejník, Okay. et al. Terahertz electrical writing pace in an antiferromagnetic reminiscence. Sci. Adv. 4, eaar3566 (2018).
Wadley, P. et al. Present polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018).
Kašpar, Z. et al. Quenching of an antiferromagnet into excessive resistivity states utilizing electrical or ultrashort optical pulses. Nat. Electron. 4, 30–37 (2021).
Zubáč, J. et al. Hysteretic results and magnetotransport of electrically switched CuMnAs. Phys. Rev. B 104, 184424 (2021).
Krizek, F. et al. Molecular beam epitaxy of CuMnAs. Phys. Rev. Mater. 4, 014409 (2020).
Janda, T. et al. Magneto-Seebeck microscopy of area switching in collinear antiferromagnet CuMnAs. Phys. Rev. Mater. 4, 094413 (2020).
Wadley, P. et al. Management of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs movies. Sci. Rep. 7, 11147 (2017).
Reimers, S. et al. Defect-driven antiferromagnetic area partitions in CuMnAs movies. Nat. Commun. 13, 724 (2022).
Máca, F. et al. Bodily properties of the tetragonal CuMnAs: a first-principles examine. Phys. Rev. B 96, 094406 (2017).
Kurebayashi, D. & Tretiakov, O. A. Skyrmion nucleation on the floor of a topological insulator. Phys. Rev. Res. 4, 043105 (2022).
Hertel, R. & Schneider, C. M. Trade explosions: magnetization dynamics throughout vortex–antivortex annihilation. Phys. Rev. Lett. 97, 177202 (2006).
Gomonay, O., Jungwirth, T. & Sinova, J. Excessive antiferromagnetic area wall velocity induced by Néel spin–orbit torques. Phys. Rev. Lett. 117, 017202 (2016).
Tomasello, R. et al. A technique for the design of skyrmion racetrack reminiscences. Sci. Rep. 4, 6784 (2014).
Geng, L. D. & Jin, Y. M. Magnetic vortex racetrack reminiscence. J. Magn. Magn. Mater. 423, 84–89 (2017).
Juge, R. et al. Helium ions put magnetic skyrmions on the monitor. Nano Lett. 21, 2989–2996 (2021).
Yu, H., Xiao, J. & Schultheiss, H. Magnetic texture primarily based magnonics. Phys. Rep. 905, 1–59 (2021).