Antiferromagnetic half-skyrmions electrically generated and managed at room temperature


  • Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and part transitions in two-dimensional techniques. J. Phys. C 6, 1181 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, Okay. & Ono, T. Magnetic vortex core statement in round dots of permalloy. Science 289, 930–932 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kläui, M. et al. Present-induced vortex nucleation and annihilation in vortex area partitions. Appl. Phys. Lett. 88, 232507 (2006).

    Article 

    Google Scholar
     

  • Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Coïsson, M. Magnetic vortex chirality willpower by way of native hysteresis loops measurements with magnetic pressure microscopy. Sci. Rep. 6, 29904 (2016).

    Article 

    Google Scholar
     

  • Gao, N. et al. Creation and annihilation of topological meron pairs in in-plane magnetized movies. Nat. Commun. 10, 5603 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Spontaneous (anti)meron chains within the area partitions of van der Waals ferromagnetic Fe5−xGeTe2. Adv. Mater. 32, 2005228 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Area-free topological conduct within the magnetic area wall of ferrimagnetic GdFeCo. Nat. Commun. 12, 5604 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Electrical field-driven rotation of magnetic vortex originating from magnetic anisotropy reorientation. Adv. Electron. Mater. 8, 2100561 (2021).

    Article 

    Google Scholar
     

  • Zhang, S. et al. Direct imaging of an inhomogeneous electrical present distribution utilizing the trajectory of magnetic half-skyrmions. Sci. Adv. 6, eaay1876 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Göbel, B., Mook, A., Henk, J., Mertig, I. & Tretiakov, O. A. Magnetic bimerons as skyrmion analogues in in-plane magnets. Phys. Rev. B 99, 060407 (2019).

    Article 

    Google Scholar
     

  • Göbel, B., Mertig, I. & Tretiakov, O. A. Past skyrmions: evaluation and views of other magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article 

    Google Scholar
     

  • Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions within the presence of utilized present and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    Article 

    Google Scholar
     

  • Thiele, A. A. Regular-state movement of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).

    Article 

    Google Scholar
     

  • Tretiakov, O. A. et al. Dynamics of area partitions in magnetic nanostrips. Phys. Rev. Lett. 100, 127204 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).

    Article 

    Google Scholar
     

  • Kolesnikov, A. G. et al. Composite topological construction of area partitions in artificial antiferromagnets. Sci. Rep. 8, 15794 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kind, J. et al. Imprinting vortices into antiferromagnets. Phys. Rev. Lett. 97, 067201 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Direct statement of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs. Nat. Phys. 7, 303–306 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chmiel, F. P. et al. Statement of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure. Nat. Mater. 17, 581–585 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, S. et al. Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings. Nature 586, 37–41 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature 590, 74–79 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Olejník, Okay. et al. Antiferromagnetic CuMnAs multi-level reminiscence cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

    Article 

    Google Scholar
     

  • Olejník, Okay. et al. Terahertz electrical writing pace in an antiferromagnetic reminiscence. Sci. Adv. 4, eaar3566 (2018).

    Article 

    Google Scholar
     

  • Wadley, P. et al. Present polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kašpar, Z. et al. Quenching of an antiferromagnet into excessive resistivity states utilizing electrical or ultrashort optical pulses. Nat. Electron. 4, 30–37 (2021).

    Article 

    Google Scholar
     

  • Zubáč, J. et al. Hysteretic results and magnetotransport of electrically switched CuMnAs. Phys. Rev. B 104, 184424 (2021).

    Article 

    Google Scholar
     

  • Krizek, F. et al. Molecular beam epitaxy of CuMnAs. Phys. Rev. Mater. 4, 014409 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Janda, T. et al. Magneto-Seebeck microscopy of area switching in collinear antiferromagnet CuMnAs. Phys. Rev. Mater. 4, 094413 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wadley, P. et al. Management of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs movies. Sci. Rep. 7, 11147 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Reimers, S. et al. Defect-driven antiferromagnetic area partitions in CuMnAs movies. Nat. Commun. 13, 724 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Máca, F. et al. Bodily properties of the tetragonal CuMnAs: a first-principles examine. Phys. Rev. B 96, 094406 (2017).

    Article 

    Google Scholar
     

  • Kurebayashi, D. & Tretiakov, O. A. Skyrmion nucleation on the floor of a topological insulator. Phys. Rev. Res. 4, 043105 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hertel, R. & Schneider, C. M. Trade explosions: magnetization dynamics throughout vortex–antivortex annihilation. Phys. Rev. Lett. 97, 177202 (2006).

    Article 

    Google Scholar
     

  • Gomonay, O., Jungwirth, T. & Sinova, J. Excessive antiferromagnetic area wall velocity induced by Néel spin–orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tomasello, R. et al. A technique for the design of skyrmion racetrack reminiscences. Sci. Rep. 4, 6784 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Geng, L. D. & Jin, Y. M. Magnetic vortex racetrack reminiscence. J. Magn. Magn. Mater. 423, 84–89 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Juge, R. et al. Helium ions put magnetic skyrmions on the monitor. Nano Lett. 21, 2989–2996 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, H., Xiao, J. & Schultheiss, H. Magnetic texture primarily based magnonics. Phys. Rep. 905, 1–59 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles